TOSHBAWOSWEWORYPRODUCIS

131,072 WORD ×8 BIT CMOS ONE TIME PROGRAMMABLE READ ONLY MEMORY SILICON STACKED GATE MOS

TC541000P-20, TC541000P-25 TC541001P-20, TC541001P-25

DESCRIPTION

The TC541000P/TC541001P is a 131,072 word x 8 bit one time programmable read only memory, and molded in a 32 pin plastic package.

The TC541000P/TC541001P's access time is 200ns/250ns and has low power standby mode which reduces the power dissipation without increasing access time. The

electrical characteristics and programming method are the same as U.V. EPROM TC571000D/TC571001D's. Once programed, the TC541000P/TC541001P can not be erased because of using plastic DIP without transparent window.

FEATURES

 Peripheral circuit : CMOS Memory cell : N-MOS

Fast access Time

TC541000P-20/TC541001P-20: 200ns TC541000P-25/TC541001P-25: 250ns

Low power dissipation
 Active : 30mA/5.0MHz
 Standby: 100 μA (Ta = 85°C)

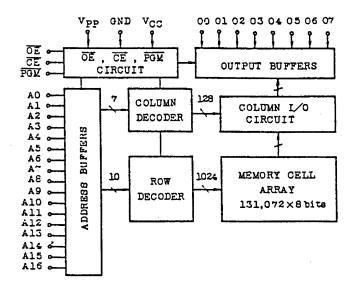
Single 5V power supply

Wide operating temperature range: −40 ~ 85°C

• Full static operation

High speed programming operation: t_{PW} 0.1ms

Input and output TTL compatible
JEDEC standard 32 pin: TC541000P
1M MROM compatible: TC541001P
Standard 32 pin DIP plastic package


PIN CONNECTION (TOP VIEW)

	\neg							ı						
VPP	dr	32	1 VCC	VPP	9	1	32	þ	VCC	(Refere	nce	(د	
Al5	ЦZ	37	! इ स्प्र	ŌĒ	þ	2	31	þ	POU	•				
Al5	ďЗ	30	NC	A15	þ	3	30	þ	NC	Al5	$\mathfrak{q}_1 \smile$	23	1	7CC
A12	d +	29	I Al4	Al2	þ	4	23	þ	A14	A12	₫æ	27	4	A14
A7	d s	29	1 A13	A7	þ	5	29	þ	A13	A7	d s	26	þ	A13
Αó	Q d	27	8A I	Aô	þ	∙ĉ	27	þ	84	Аб	d 4	25	þ	6A
A5	4 7	25	1 A9	A5	þ	7	26	þ	A9	A5	d 5	24	7	A9
A4	t ls	25	All	A4	þ	8	25	þ	All	A4	d a	23	þ	All
EA.	¢э	24) उद्	EA	þ	9	24	þ	Ald	EA.	d۶	22	þ	Al6
A2	d 10	23	1 A10	A2	þ	10	23	þ	A10	A2	d a	21	þ	A10
Al.	фĦ	22	। टर्ड	A1	þ	11	22	þ	टड	Al	d 9	20	þ	CZ
AO	d 12	21	1 D7	AO	þ	12	21	þ	D7	AO	d 70	19	þ	D7
ρα	d 72	20	D6	סמ	þ	13	20	þ	D6	DO	d 17	18	þ	D6
D1	d 14	19] D5	Dl	q	14	19	þ	D5	Dl	d 12	17	þ	D5
D2	q 15	13	1 D4	D2	þ	15	13	þ	D4	D2	d 13	15	þ	D4
GND	d 13	17	1 p3	GND	4	16	17	þ	D3	GND	1:	15	þ	D3
	TC5410	200	1		•	rC5410	01	-		(1M Mas TC5310			(^{MC}

PIN NAMES

A0 ~ A16	Address Inputs
D0 ~ D7	Output (Inputs)
CE	Chip Enable Input
ŌĒ	Output Enable Input
PGM	Program Control Input
V _{cc}	Power Supply Voltage
V _{PP}	Program Supply Voltage
GND	Ground
NC	No Connection

BLOCK DIAGRAM

MODE SELECTION

PIN	PGM	CE	ŌĒ	V _{PP}	Vcc	00 ~ 07	POWER
Read	Н	L	L			Data Out	
Output Deselect	*	* H		5V	5V	High Impedance	Active
Standby	*	Н	*			High Impedance	Standby
Program	L	L	Н			Data In	
Program Inhibit	*	Н	*	12.75V	6.25V	High Impedance	Active
riogram minion	Н	L	Н	12./50	0.25V	High Impedance	Active
Program Verify	Н	L	L]		Data Out	1

^{*:}HorL

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
V _{CC}	Power Supply Voltage	-0.6 ~ 7.0	V
V _{PP}	Program Supply Voltage	− 0.6 ~ 14.0	V
V _{IN}	Input Voltage	− 0.6 ~ 7.0	V
V _{I/O}	Input/Output Voltage	$-0.6 \sim V_{CC} + 0.5$	V
PD	Power Dissipation	1.5	W
TSOLDER	Soldering Temperature • Time	260•10	°C•sec
TSTRG	Storage Temperature	− 65 ~ 125	°C
TOPR	Operating Temperature	−40 ~ 85	°C

READ OPERATION

D.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{IH}	Input High Voltage	2.2		V _{CC} + 0.3	
VIL	Input Low Voltage	-0.3		0.8	
Vcc	V _{CC} Power Supply Voltage	4.75	5.00	5.25	V
V_{PP}	V _{PP} Power Supply Voltage	V _{CC} - 0.6	V _{CC}	V _{CC} + 0.6	

D.C. AND OPERATING CHARACTERISTICS (Ta = $-40 \sim 85^{\circ}$ C, V $_{CC}$ = 5V ± 5%)

SYMBOL	PARAMETER	TEST CO	NDITION	MIN.	TYP.	MAX.	UNIT
I _{LI}	Input Current	$V_{IN} = 0 \sim V_{CO}$		-		±10	μΑ
lcco1	Operating Current	CE = 0V	f = 5.0 MHz		_	30	<u> </u>
l _{CC02}	operating current	Am 0 = Tuol	f = 1 MHz	_	_	10	mA
lccs1	Standby Current	CE = V _{IH}	CE = V _{IH}			1	mA
lccs2	Standa, Sanon	CE = V _{CC} 0	.2V	_	-	100	μΑ
V _{OH}	Output High Voltage	$I_{OH} = -400 \mu$	Δ	2.4			V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA			_	0.4	V
I _{PP1}	V _{PP} Current	$V_{PP} = V_{CC} \pm 0.6V$		_		±10	μΑ
l LO	Output Leakage Current	$V_{OUT} = 0.4V \sim V_{CC}$		_	†	10	μΑ

A.C. CHARACTERISTICS (Ta = $-40 \sim 85^{\circ}$ C, $V_{CC} = 5V \pm 5\%$, $V_{PP} = V_{CC} \pm 0.6V$)

SYMBOL	PARAMETER		000P-20/ 001P-20	1	000P-25/ 001P-25	UNIT
		MIN.	MAX.	MIN.	MAX.	
^t ACC	Address Access Time	_	200	_	250	1
t _{CE}	CE to Output Valid		200		250	-
toE	OE to Output Valid		70		100	1
^t PGM	PGM to Output Valid	_	70	_	100	1
t _{DF1}	CE to Output in High-Z	0	60	0	90	ns
t _{DF2}	OE to Output in High-Z	0	60	0	90	1
t _{DF3}	PGM to Output in High-Z	0	60	0	90	1
t _{OH}	Output Data Hold Time	0		0	 	1

A.C. TEST CONDITIONS

Output Load

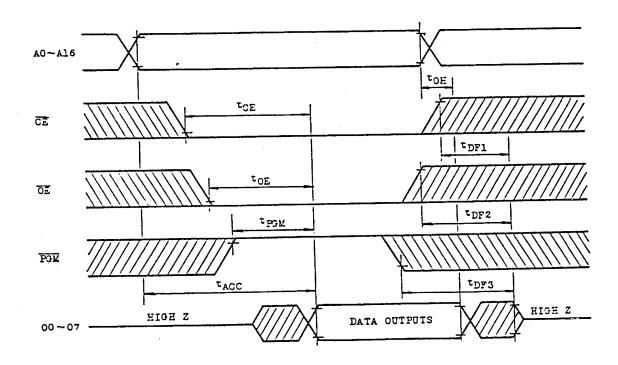
: 1 TTL Gate and $C_L = 100pF$

Input Pulse Rise and Fall Times

: 10ns Max.

Input Pulse Levels

: 0.45V and 2.4V


Timing Measurement Reference Level: Inputs 0.8V and 2.2V Outputs 0.8V and 2.0V

CAPACITANCE * (Ta = 25°C, f = 1MHz)

٢	SYMBOL	PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	ĺ
ŀ		Input Capacitance	V _{IN} = 0V	_	4	8	pF	١
-	COUT	Output Capacitance	V _{OUT} = 0V	_	10	12		ļ

^{*} This parameter is periodically sampled and is not 100% tested.

TIMING WAVEFORMS (READ)

HIGH SPEED PROGRAM OPERATION

D.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{IH}	Input High Voltage	2.2		V _{CC} + 1.0	
VIL	Input Low Voltage	-0.3	_	0.8	
Vcc	V _{CC} Power Supply Voltage	6.00	6.25	6.50	V
VPP	V _{PP} Power Supply Voltage	12.50	12.75	13.00	

D.C. AND OPERATING CHARACTERISTICS (Ta = $25 \pm 5^{\circ}$ C, $V_{CC} = 6.25 \pm 0.25$ V, $V_{PP} = 12.75 \pm 0.25$ V)

SYMBOL	PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
LI	Input Current	V _{IN} = 0 ~ V _{CC} ~	_	-	±10	μΑ
V _{OH}	Output High Voltage	$I_{OH} = -400 \mu A$	2.4	_	_	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA	_	_	0.4	V
¹ cc	V _{CC} Supply Current		_	_	30	mA
I _{PP2}	V _{PP} Supply Current	V _{PP} = 13.0V	 		50	mA
V _{ID}	A9 Auto Select Voltage	_	11.5	12.0	12.5	V

A.C. PROGRAMMING CHARACTERISTICS (Ta = $25 \pm 5^{\circ}$ C, $V_{CC} = 6.25 \pm 0.25$ V, $V_{PP} = 12.75 \pm 0.25$ V)

SYMBOL	PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
t _{AS}	Address Setup Time		2	_	_	μs
t _{AH}	Address Hold Time		2	_		μs
t _{CES}	CE Setup Time	_	2	_		μs
^t CEH	CE Hold Time	_	2	_	-	μs
t _{DS}	Data Setup Time	-	2	-	_	μs
t _{DH}	Data Hold Time		2	_	_	μs
t _{VS}	V _{PP} Setup Time	-	2	_	-	μs
tpW	Program Pulse Width	_	0.095	0.1	0.105	ms
toE	OE to Output Valid	_	-	_	100	ns
t _{DF2}	ŌĒ to Output in High-Z	CE = V _{IL}	_	_	90	ns

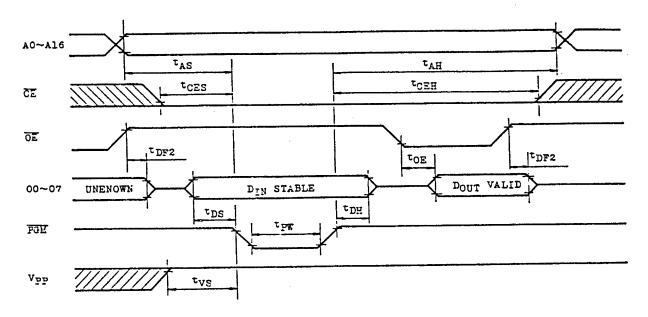
A.C. TEST CONDITIONS

Output Load

: 1 TTL Gate and C₁ (100pF)

Input Pulse Rise and Fall Time

: 10ns Max.


Input Pulse Levels

: 0.45V and 2.4V

Timing Measurement Reference Level: Input 0.8V and 2.2V, Output 0.8V and 2.0V

HIGH SPEED PROGRAM OPERATION

• TIMING CHART

- NOTE: 1. V_{CC} must be applied simultaneously or before V_{PP} and cut off simultaneously or after V_{PP} .
 - 2. Removing the device from socket and setting the device in socket with $V_{PP}=12.75V$ may cause permanent damage to the device.
 - 3. The V_{PP} supply voltage is permitted up to 14V for program operation, so the voltage over 14V should not be applied to the V_{PP} terminal. When the switching pulse voltage is applied to the V_{PP} terminal, the overshoot voltage of its pulse should not be exceeded 14V.

OPERATION INFORMATION

The TC541000P/TC541001P's six operation modes are listed in the following table. Mode selec-

tion can be achieved by applying TTL level signal to all inputs.

		PGM	ĈĒ	ŌE	V _{PP}	V _{CC}	00 ~ 07	POWER
READ OPERATION (Ta = $-40 \sim 85^{\circ}$ C)	Read	Н	L	L			Data Out	<u> </u>
	Output Deselect	*	*	Н	5V	5V	High Impedance	Active
	Standby	*	Н	*			High Impedance	Standby
PROGRAM	Program	L	L	Н			Data In	·
OPERATION	Program Inhibit	*	H	*	10.751/	0.0514	High Impedance	1
(Ta = 25 ± 5°C)	rogram minut	Н	L	Н	12.75∨	6.25V	High Impedance	Active
	Program Verify	Н	L	L	1		Data Out	1

Note: H; V_{IH}, L; V_{IL}, *; V_{IH} or V_{IL}

READ MODE

The TC541000P/TC541001P has three control functions. The chip enable (\overline{CE}) controls the operation power and should be used for device selection. The output enable (\overline{OE}) and the program control (\overline{PGM}) control the output buffers, independent of device selection.

Assuming in that $\overline{CE} = \overline{OE} = V_{1L}$ and $\overline{PGM} = V_{1H}$, the output data is valid at the output after address access time from stabilizing of all addresses. The \overline{CE} to output valid (t_{CE}) is equal to the address access time (t_{ACC}).

Assuming that $\overline{CE} = V_{IL}$, $\overline{PGM} = V_{IH}$ and all addresses are valid, the output data is valid at the outputs after t_{OE} from the falling edge of \overline{OE} . And assuming that $\overline{CE} = \overline{OE} = V_{IL}$ and all addresses are valid, the output data is valid at the outputs after t_{PGM} from the rising edge of \overline{PGM} .

OUTPUT DESELECT MODE

Assuming that $\overline{CE} = V_{IH}$ or $\overline{OE} = V_{IH}$, the outputs will be in a high impedance state. So two or more ROMs can be connected together on a common bus line. When \overline{CE} is decoded for device selection, all deselected devices are in low power standby mode.

STANDBY MODE

The TC541000P/TC541001P has a low power standby mode controlled by the \overline{CE} signal. By applying a high level to the \overline{CE} input, the TC541000P/TC541001P is placed in the standby mode which recude the operating current to $100\mu A$ by applying

MOS-high level (V_{CC}) and then the outputs are in a high impedance state, independent of the \overline{OE} inputs.

PROGRAM MODE

Initially, when received by customers, all bits of the TC541000P/TC541001P are in the "1" state which is erased state. Therefore the program operation is to introduce "0's" data into the desired bit locations by electrically programming.

The levels required for all inputs are TTL. The TC541000P/TC541001P can be programmed any location at anytime —— either individually, sequentially, or at random.

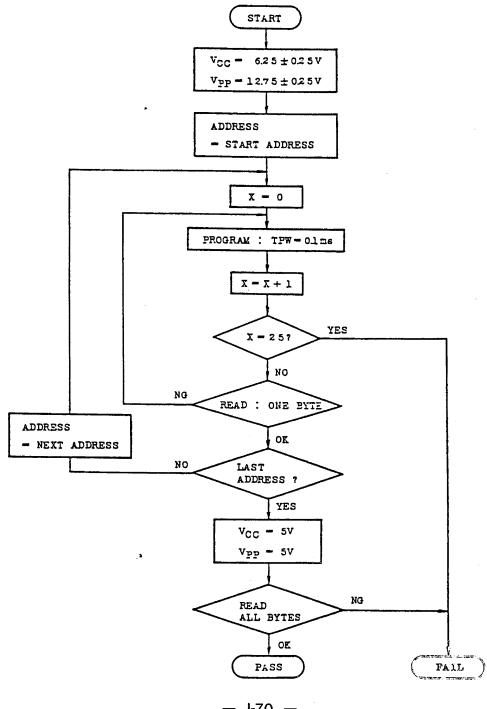
PROGRAM VERIFY MODE

The verify mode is to check that the desired data is correctly programmed on the programmed bits. The verify is accomplished with \overline{OE} and \overline{CE} at V_{IL} and PGM at V_{IH} .

PROGRAM INHIBIT MODE

Under the condition that the program voltage (+12.75V) is applied to V_{PP} terminal, a high level \overline{CE} or \overline{PGM} input inhibits the TC541000P/TC541001P from being programmed. Programming of two or more EPROMS in parallel with different data is easily accomplished. That is, all inputs except for \overline{CE} or \overline{PGM} may be commonly connected, and a TTL low level program pulse is applied to the \overline{CE} and \overline{PGM} of the desired device only and TTL high level signal is applied to the other devices.

HIGH SPEED PROGRAM OPERATION


The device is set up in the high speed programming mode when the programming voltage (+12.75V) is applied to the V_{PP} terminal with V_{CC} = 6.25V and $\overline{PGM} = V_{1H}$.

The programming is achieved by applying a single TTL low level 0.1 ms pulse the PGM input after addresses and data are stable. Then the programmed data is verified by using Program Verify Mode.

If the programmed data is not correct, another program pulse of 0.1ms is applied and then programmed data is verified. This should be repeated until the program operates correctly (max. 25 times).

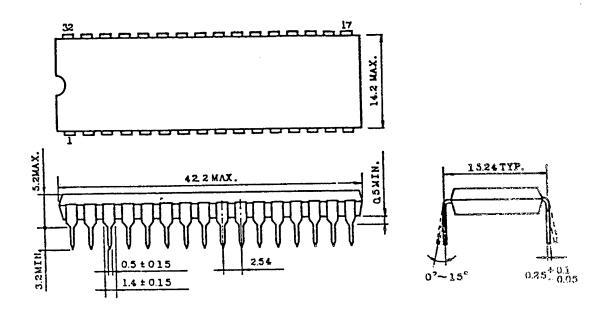
When programming has been completed, the data in all addresses should be verified with $V_{CC} = V_{PP}$

FLOW CHART

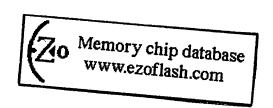
ELECTRIC SIGNATURE MODE

Electric signature mode allows to read out a code from TC541000P/TC541001P which identifies it's manufacturer and device type.

The programming equipment may read out manufacturer code and device code from TC541000P/ TC541001P by using this mode before program operation and automatically set program voltage (V_{PP}) and algorithm.


Electric Signature mode is set up when 12V is applied to address line A9 and the rest of address lines is set to $V_{\rm IL}$ in read operation. Data output in this conditions is manufacturer code. Device code is identified when address A0 is set to $V_{\rm IH}$. These two codes possess an odd parity with the parity bit of MSB (07). The following table shows electric signature of TC541000P/TC541001P.

SIGNATURE	PINS	Ao	0,	06	05	04	O ₃ ~	02	01	00	HEX. DATA
Manufacture Code		VIL	1	0	0	1	1	0	0	0	98
Device Code	TC541000P	ViH	1	0	0	0	0	1	1	0	86
	TC541001P		0	0	0	0	0	1	1	1	07


Notes: $A9 = 12V \pm 0.5V$

A1 \sim A8, A10 \sim A16, \overline{CE} , $\overline{OE} = V_{IL}$

PGM = VIH

- NOTE: 1. Each lead pitch is 2.54mm. All leads are located within 0.25mm of their true longitudinal position with respect No.1 and No.32 leads.
 - 2. This value is measured at the end of leads.
 - 3. All dimensions are in millimeters.

